Psychometric Properties of a Screening Tool for Elementary School Students’ Math Learning Disorder Risk

Sinan Olkun, Arif Altun, Sakine Gocer Sahin, Galip Kaya

Abstract


Aim:

This study reports the psychometric properties of a basic number processing test (BNPT), which was developed in order to determine elementary school students at risk for mathematical learning disorder.

Methods:

  A total of 478 primary school students were gathered from 12 different public schools with an attempt to get a representative sample. The reliability and validity of the dyscalculia screening tool were assessed with approximately 120 students from each of the 1st through 4th grade.

Results:

Results showed that, except for the first grade, the test scores predict the significant portion of the students’ curriculum based math achievement scores for 2nd, 3rd and the 4th graders with having the highest variance in the second grade.

Conclusions:

These findings indicate that BNPT could be used as a screening tool in order to determine the students at risk for mathematics learning disorders in those grades. It could also be deduced that at least very important portions of the causes of low achievement in mathematics might originate from either the core systems of number or the system for accessing numbers from symbols. It is also suggested that symbolic or non-reading measurement paradigms would be more appropriate for screening 1st graders.

 

Keywords: Basic number processing skills, math learning disorder, low math achievement, reliability, validity


Keywords


Basic number processing skills, math learning disorder, low math achievement, reliability, validity

Full Text:

PDF

References


Barbaresi, W. J., Katusic, S. K., Colligan, R. C., Weaver, A. L., & Jacobsen, S. J. (2005). Math learning disorder: incidence in a population-based birth cohort, 1976-82, Rochester, Minn. Ambulatory Pediatrics, 5(5), 281-289. doi:10.1367/A04-209R.1

Bruyer, R., & Brysbaert, M. (2011). Combining speed and accuracy in cognitive psychology: is the inverse efficiency score (ies) a better dependent variable than the mean reaction time (rt) and the percentage of errors (pe)? Psychologica Belgica, 51(1), 5-13.

Butterworth, B. (2003). Dyscalculia screener manual. The Chiswick Centre, 414 Chiswick High Road, London W4 5TF, UK: nferNelson.

Butterworth, B. (2009). Dyscalculia: Causes, identification, intervention and recognition. Paper presented at the Dyscalculia and Maths Learning Difficulties, Holiday Inn, Bloomsbury (nr. Euston Station) London.

Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14(12), 534-541. doi:10.1016/j.tics.2010.09.007

Crocker, L., & Algina, J. (1986). Introduction to classical and modern test theory. Philadelphia: Harcourt Brace Jovanovich College Publishers.

Cureton, E. E. (1957). The Upper and Lower Twenty-seven Per Cent Rule. Psychometrika(22), 293- 296.

De Vos, T. (1992). Tempo-test rekenen (Number fact retrieval test). Nijmegen: Berkhout.

Dehaene, S., Izard, V., Spelke, E., & Pica, P. (2008). Log or Linear? Distinct Intuitions of the Number Scale in Western and Amazonian Indigene Cultures. Science, 320(5880), 1217-1220. doi:10.1126/science.1156540

Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307-314. doi:10.1016/j.tics.2004.05.002

Fidan, E. (2013). İlkokul Öğrencileri İçin Matematik Dersi Sayılar Öğrenme Alanında Başarı Testi Geliştirilmesi. (Yayımlanmamış Yüksek Lisans Tezi), Ankara Üniversitesi, Eğitim Bilimleri Enstitüsü.

Frisbie, D. A. (1988). Reliability of scores from teacher-made tests. Article of NCME Instructional Module. University of Lowa.

Geary, D. C., Bailey, D. H., & Hoard, M. K. (2009). Predicting Mathematical Achievement and Mathematical Learning Disability with a Simple Screening Tool: The Number Sets Test. Journal of Psychoeducational Assessment, 27(3), 265-279. doi:10.1177/0734282908330592

Heine, A., Tamm, S., De Smedt, B., Schneider, M., Thaler, V., Torbeyns, J., . . . Jacobs, A. (2010). The numerical stroop effect in primary school children: a comparison of low, normal, and high achievers. Child Neuropsychol, 16(5), 461-477. doi:10.1080/09297041003689780

Iuculano, T., Tang, J., Hall, C. W., & Butterworth, B. (2008). Core information processing deficits in developmental dyscalculia and low numeracy. Developmental Science, 11(5), 669-680. doi:10.1111/j.1467-7687.2008.00716.x

MEB. (2004). İlköğretim Matematik Dersi Öğretim Programı. Ankara: Milli Eğitim Basımevi.

Mussolin, C., Mejias, S., & Noël, M.-P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115(1), 10-25. doi:10.1016/j.cognition.2009.10.006

Olkun, S., Can, D., & Yeşilpınar, M. (2013). Hesaplama Performansı Testi: Geçerlilik Ve Güvenilirlik Çalışması. Paper presented at the USOS 2013 Ulusal Sınıf Öğretmenliği Sempozyumu, Aydın, TR.

Raven, J. (2000). The Raven's progressive matrices: change and stability over culture and time. Cogn Psychol, 41(1), 1-48. doi:10.1006/cogp.1999.0735

Shalev, R. S., Auerbach, J., Manor, O., & Gross-Tsur, V. (2000). Developmental dyscalculia: prevalence and prognosis. Eur Child Adolesc Psychiatry, 9 Suppl 2, II58-64.

Townsend, J. T., & Ashby, F. G. (1978). Methods of modeling capacity in simple processing systems. In J. Castellan & F. Restle (Eds.), Cognitive theory (Vol. 3, pp. 200-239). Hillsdale N.J.: Erlbaum.

Townsend, J. T., & Ashby, F. G. (1983). Stochastic modeling of elementary psychological processes. Cambridge: Cambridge University Press.


Refbacks

  • There are currently no refbacks.


e-ISSN: 1694-2116

p-ISSN: 1694-2493